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We work over a commutative ring (with unity) R. Let Mp,q denote the
p× q matrix space over R, which we identify with the space of linear maps
Rq → Rp by interpreting them as matrices of linear maps in the standard
bases. Let Eij be the standard basis matrix with a 1 on position (i, j) and
0 elsewhere. The size of Ei,j depends on the context. We order them using
the lexicographical order, that is, first by row, then by column.

Definition 1. The (row) vectorization vec(A) of a matrix A is the column
vector obtained by stacking its (transposed) rows. It is its coordinate vector
in the standard basis (Ei,j).

We study how matrix products behave with respect to vectorization.

Remark. Usually the name ‘vectorization’ is used for what one could call the
column vectorization and the (Eij) are ordered colexicographically. This
turns out to be unnatural in this context; see Lemma 4. They are related
by vecc(A) = vecr(At).

Definition 2. For free R-modules P,Q with bases (ei) and (fj), the ten-
sored basis of P ⊗Q is the one consisting of ei ⊗ fj , ordered lexicographi-
cally, that is, first by i then by j.

Definition 3. For A ∈ Mp,q and B ∈ Mr,s, their Kronecker product is
the pr × qs matrix of the tensored map A⊗B : Rq ⊗Rs → Rp ⊗Rr in the
standard bases. Explicitly, it is given by the block matrixa11B · · · a1qB

...
. . .

...
ap1B · · · apqB
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Remark. With this definition we immediately have identities like AB⊗CD =
(A⊗ C)(B ⊗D) whenever the LHS is defined. We won’t need those.

The vectorization and the Kronecker product give the impression that they
are related. Indeed, the heart of the matter is that matrices are identified
with bilinear maps, which are identified with elements of the dual of a tensor
product, and thus with elements of the tensor product:

Lemma 4. Let A ∈Mp,q be considered as a bilinear map on Rp ×Rq, that
is, an element of the dual (Rp ⊗Rq)∗, which we identify via the choice of a
basis with Rp⊗Rq. Then vec(A) is the coordinate vector of A as an element
of Rp ⊗Rq.

Proof. We only have to check that Eij goes to ei ⊗ fj with those identifi-
cations, since the ordering of the bases is the same. Indeed, Eij = eif

t
j is

the bilinear map that sends (ei, fj) to 1 and all other (ei, fj) to 0. Thus as
an element of the dual (Rp ⊗Rq)∗ it sends ei ⊗ fj to 1 and all other tensor
basis elements to 0. By definition of the identification of a module with its
dual via a basis, this linear form is identified with ei ⊗ fj .

Theorem 5. Let A,B,C be matrices such that ABC is defined. Then
vec(ABC) = (A⊗ Ct) vec(B).

The proof will explain why the dimensions match for the statement to make
sense.

Proof. We interpret ABC and B as bilinear maps, and A and C as linear
maps. On the level of bilinear maps, we have a commutative diagram:

Rs ×Rt Rp ×Rq R
(At,C)

ABC

B

On the level of duals of tensor products, we have:

Rs ⊗Rt Rp ⊗Rq R
At⊗C

B◦(At⊗C)=ABC

B

where the equality B ◦ (At⊗C) = ABC follows from the universal property
of Rs⊗Rt. By definition of the duality functor, precomposition with At⊗C
is the dual of At ⊗C as a linear map. By identifying a free module with its
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dual, we revert this functor on objects and take the transpose of linear maps
(well-defined when fixing a basis), and so on the level of tensor products, we
have:

Rs ⊗Rt Rp ⊗Rq

ABC B

(At⊗C)t

So that by Lemma 4 and the definition of Kronecker product:

vec(ABC) = (At ⊗ C)t vec(B)

It remains to check that (At ⊗ C)t = A ⊗ Ct, which is done in the lemma
below.

Lemma 6. We have (A⊗B)t = At ⊗Bt whenever the LHS is defined.

Proof. meh
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